Parallel Genetic Algorithm to Solve Traveling Salesman Problem on MapReduce Framework using Hadoop Cluster

ثبت نشده
چکیده

Traveling Salesman Problem (TSP) is one of the most common studied problems in combinatorial optimization. Given the list of cities and distances between them, the problem is to find the shortest tour possible which visits all the cities in list exactly once and ends in the city where it starts. Despite the Traveling Salesman Problem is NP-Hard, a lot of methods and solutions are proposed to the problem. One of them is Genetic Algorithm (GA). GA is a simple but an efficient heuristic method that can be used to solve Traveling Salesman Problem. In this paper, we will show a parallel genetic algorithm implementation on MapReduce framework in order to solve Traveling Salesman Problem. MapReduce is a framework used to support distributed computation on clusters of computers. We used free licensed Hadoop implementation as MapReduce framework. Keywords-Hadoop, MapReduce, Traveling Salesman Problem, Parallel Genetic Algorithm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Genetic Algorithm to Solve Traveling Salesman Problem on MapReduce Framework using Hadoop Cluster

Traveling Salesman Problem (TSP) is one of the most common studied problems in combinatorial optimization. Given the list of cities and distances between them, the problem is to find the shortest tour possible which visits all the cities in list exactly once and ends in the city where it starts. Despite the Traveling Salesman Problem is NP-Hard, a lot of methods and solutions are proposed to th...

متن کامل

Genetic Algorithm: Simple to Parallel Implementation using MapReduce

Simple Genetic Algorithms are used to solve optimization problems. Genetic Algorithm also comes with a parallel implementation as Parallel Genetic Algorithm (PGA). PGA can be used to reduce the execution time of SGA and also to solve larger size instances of problems. In this paper, different implementations for PGA have been discussed with their frameworks. In this implementation, all PGA are ...

متن کامل

Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments

Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...

متن کامل

Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013